Two Sensory Data Set on Wines of The World

R code
# Before loading the data, load the following packages
library(dplyr)
library(knitr)
library(kableExtra)
library(ggplot2)

# Load the data with the following commands
data("winesOf3Colors", package = "data4PCCAR")
# Define the colors for the plots
wineColors <- winesOf3Colors$winesDescriptors$color
wineColors <- as.character(recode(wineColors, red = 'indianred4', white = 'gold', rose = 'lightpink2'))

First data-set

The data for the wines of the 3 colors example are shown in the following tables for the 3 countries of origin: Argentina, Canada, and USA.

origin color varietal Price Acidity Alcohol Sugar Tannin fruity floral vegetal spicy woody sweet astringent acidic hedonic
A1 Argentina red merlot 11 5.33 13.8 2.75 559 6 2 1 4 5 3 5 4 2
A2 Argentina red cabernet 5 5.14 13.9 2.41 672 5 3 2 3 4 2 6 3 2
A3 Argentina red shiraz 7 5.16 14.3 2.20 455 7 1 2 6 5 3 4 2 2
A4 Argentina red pinot 16 4.37 13.5 3.00 348 5 3 2 2 4 1 3 4 4
A5 Argentina white chardonnay 14 4.34 13.3 2.61 46 5 4 1 3 4 2 1 4 6
A6 Argentina white sauvignon 8 6.60 13.3 3.17 54 7 5 6 1 1 4 1 5 8
A7 Argentina white riesling 9 7.70 12.3 2.15 42 6 7 2 2 2 3 1 6 9
A8 Argentina white gewurzt 11 6.70 12.5 2.51 51 5 8 2 1 1 4 1 4 9
A9 Argentina rose malbec 4 6.50 13.0 7.24 84 8 4 3 2 2 6 2 3 8
A10 Argentina rose cabernet 3 4.39 12.0 4.50 90 6 3 2 1 1 5 2 3 8
A11 Argentina rose pinot 6 4.89 12.0 6.37 76 7 2 1 1 1 4 1 4 9
A12 Argentina rose syrah 5 5.90 13.5 4.20 80 8 4 1 3 2 5 2 3 7
origin color varietal Price Acidity Alcohol Sugar Tannin fruity floral vegetal spicy woody sweet astringent acidic hedonic
C1 Canada red merlot 20 7.42 14.9 2.1 483 5 3 2 3 4 3 4 4 3
C2 Canada red cabernet 15 7.35 14.5 1.9 698 6 3 2 2 5 2 5 4 2
C3 Canada red shiraz 20 7.50 14.5 1.5 413 6 2 3 4 3 3 5 1 2
C4 Canada red pinot 25 5.70 13.3 1.7 320 4 2 3 1 3 2 4 4 4
C5 Canada white chardonnay 20 6.00 13.5 3.0 35 4 3 2 1 3 2 2 3 5
C6 Canada white sauvignon 15 7.50 12.0 3.5 40 8 4 3 2 1 3 1 4 8
C7 Canada white riesling 15 7.00 11.9 3.4 48 7 5 1 1 3 3 1 7 8
C8 Canada white gewurzt 18 6.30 13.9 2.8 39 6 5 2 2 2 3 2 5 6
C9 Canada rose malbec 8 5.90 12.0 5.5 90 6 3 3 3 2 4 2 4 8
C10 Canada rose cabernet 6 5.60 12.5 4.0 85 5 4 1 3 2 4 2 4 7
C11 Canada rose pinot 9 6.20 13.0 6.0 75 5 3 2 1 2 3 2 3 7
C12 Canada rose syrah 9 5.80 13.0 3.5 83 7 3 2 3 3 4 1 4 7
origin color varietal Price Acidity Alcohol Sugar Tannin fruity floral vegetal spicy woody sweet astringent acidic hedonic
U1 USA red merlot 25 6.00 13.6 3.50 578 7 2 2 5 6 3 4 3 2
U2 USA red cabernet 15 6.50 14.6 3.50 710 8 3 1 4 5 3 5 3 2
U3 USA red shiraz 25 5.30 13.9 1.99 610 8 2 3 7 6 4 5 3 1
U4 USA red pinot 28 6.10 14.0 0.00 340 6 3 2 2 5 2 4 4 2
U5 USA white chardonnay 15 7.20 13.3 1.10 41 6 4 2 3 6 3 2 4 5
U6 USA white sauvignon 8 7.20 13.5 1.00 50 6 5 5 1 2 4 2 4 7
U7 USA white riesling 10 8.60 12.0 1.65 47 5 5 3 2 2 4 2 5 8
U8 USA white gewurzt 20 9.60 12.0 0.00 45 6 6 3 2 2 4 2 3 8
U9 USA rose malbec 3 6.20 12.5 4.00 84 8 2 1 4 3 5 2 4 7
U10 USA rose cabernet 4 5.71 12.5 4.30 93 8 3 3 3 2 6 2 3 8
U11 USA rose pinot 8 5.40 13.0 3.10 79 6 1 1 2 3 4 1 3 6
U12 USA rose syrah 6 6.50 13.5 3.00 89 9 3 2 5 4 3 2 3 5

Four tables

There are four types of variables in the data:

  • Descriptors: origin, color and varietal;
  • Supplementary variables: Price;
  • Chemical data: Acidity, Alcohol, Sugar, and Tannin;
  • Sensory data: fruity, floral, vegetal, spicy, woody, sweet, astringent, and hedonic.

The sensory scores

Second data-set

The illustrative (albeit fictitious) data used for this example come from a chapter by Hervé Abdi and Dominique Valentin: Multiple factor analysis. In N.J. Salkind (Ed.): Encyclopedia of Measurement and Statistics. Thousand Oaks (CA): Sage. pp. 657—663. This chapter can be downloaded from the home page of Hervé Abdi: (look for number C40) or directly here).

In this example, three different assessors (named e1, e2, and e3) evaluated 6 wines on a 9-point scale using their own descriptors:

Assessor Descriptors
e1 fruity, woody, coffee
e2 red.fruit, roasted, vanillin, woody
e3 fruity, butter, woody

The scores are presented in the following table.

R code
data('wines2007', package = "ExPosition")
# your data (a concatenated data tables)
# Have a look at the table:
wines2007$data
e1.fruity e1.woody e1.coffee e2.red.fruit e2.roasted e2.vanillin e2.woody e3.fruity e3.butter e3.woody
W1 1 6 7 2 5 7 6 3 6 7
W2 5 3 2 4 4 4 2 4 4 3
W3 6 1 1 5 2 1 1 7 1 1
W4 7 1 2 7 2 1 2 2 2 2
W5 2 5 4 3 5 6 5 2 6 6
W6 3 4 4 3 5 4 5 1 7 5