Sparse Correspondence Analysis based on the "projected Penalized Matrix Decomposition"
sCAwithPMD.Rd
Sparse Correspondence Analysis based on the "projected Penalized Matrix Decomposition"
Arguments
- DATA
the I times J contingency table
- dimensions,
integer, the number of dimensions to return (default to 2)
- doublecentering,
logical: should the data be double-centered (default to TRUE)
- s1,
vector of size 'dimensions" containing the left side regularization parameters, the coefficients in this vector should belong to the interval 1, sqrt(I), (default to rep(1, dimensions))
- s2,
vector of size 'dimensions" containing the left side regularization parameters, the coefficients in this vector should belong to the interval 1, sqrt(J), (default to rep(1, dimensions))
Examples
sCAwithPMD(HairEyeColor[,,1],dimensions = 3L, s1 = rep(0.5 * sqrt(dim(HairEyeColor)[1]), 3), rdsRight = rep(0.5 * sqrt(dim(HairEyeColor)[2]), 3))
#> Error in sCAwithPMD(HairEyeColor[, , 1], dimensions = 3L, s1 = rep(0.5 * sqrt(dim(HairEyeColor)[1]), 3), rdsRight = rep(0.5 * sqrt(dim(HairEyeColor)[2]), 3)): unused argument (rdsRight = rep(0.5 * sqrt(dim(HairEyeColor)[2]), 3))