Projected PMD of a matrix.
pPMD.Rd
Projected PMD of a matrix.
Arguments
- Data
the rectangular matrix to decompose ;
- k
the desired rank of the singular decomposition (default to 2) ;
- rdsLeft
a vector of radiuses (>0) of the $L_1$ or $L_G$ balls for each of the k left vectors ;
- rdsRight
a vector of radiuses (>0) of the $L_1$ or $L_G$ balls for each of the k right vectors ;
- tol.si
tolerance for the sparsity
Examples
X <- matrix(rnorm(20), 5, 4)
pPMD(X)
#> $d
#> [1] 2.528738 1.476340
#>
#> $u
#> [,1] [,2]
#> [1,] 0 0
#> [2,] 0 0
#> [3,] 1 0
#> [4,] 0 0
#> [5,] 0 -1
#>
#> $v
#> [,1] [,2]
#> [1,] 0 0
#> [2,] 0 0
#> [3,] 0 -1
#> [4,] 1 0
#>
#> $rdsLeft
#> [1] 1 1
#>
#> $rdsRight
#> [1] 1 1
#>
pPMD(
X,
k = 3L,
rdsLeft = rep(0.5 * sqrt(5), 3),
rdsRight = rep(0.5 * sqrt(4), 3))
#> $d
#> [1] 2.7292513 1.3837271 0.9913628
#>
#> $u
#> [,1] [,2] [,3]
#> [1,] 0.0000000 0.03690889 0.0000000
#> [2,] 0.0000000 -0.08546704 -0.9920297
#> [3,] 0.9920297 0.00000000 0.0000000
#> [4,] 0.0000000 0.00000000 0.1260040
#> [5,] -0.1260041 -0.99565713 0.0000000
#>
#> $v
#> [,1] [,2] [,3]
#> [1,] 0 0 0
#> [2,] 0 0 1
#> [3,] 0 -1 0
#> [4,] 1 0 0
#>
#> $rdsLeft
#> [1] 1.118034 1.118034 1.118034
#>
#> $rdsRight
#> [1] 1 1 1
#>