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Principal component analysis (PCA for short) is, by far, the oldest multivariate method: The 

mathematical formulation can be found as early as in 1829 (by the French mathematician 

Cauchy, see Abdi and Williams, 2010), whereas the geometrical formulation can be found in 

a paper published in 1901 by Karl Pearson (of χ2 fame). But the modern approach is exposed 

in 1933 by Hotteling and in 1936 by Eckart and Young. Most of the current multivariate 

methods are variations over the theme of PCA which remains (by far) the most popular 

multivariate method. 

PCA is an exploratory method that analyzes a data table for which some observations (that 

are in general the rows of the data table) are described by quantitative variables (that are in 

general the columns of the data table). PCA extracts, from this data table, the relevant 

information and represents it with maps (sometimes called factorial or factor maps) that show 

on one hand the structure of the observations and on the other hand the structure of the 

variables. 

In sensory evaluation, PCA is mostly used to analyze data for which products (the 

observations) are described by some sensory attributes (the variables)—A pattern that 

corresponds, for example, to experimental procedures such as Sensory Profile or Rate All 

That Apply (RATA) or Polarized Sensory Positioning. 

1. The data for PCA 

Figure 1.1 shows an example of a data table suitable for a PCA. Here the rows of the data 

table are beers and the columns are sensory characteristics (e.g., Bitter, Acidic). At the 

intersection of a row (representing a beer) and a column (representing a sensory characteristic) 

we find the intensity of this sensory characteristic (the column) for this beer (the row). 
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Figure 1.1 An Example of Data Suitable for PCA 

2. The goals of PCA 

In PCA we have different questions for the observations and the variables of the table. For 

the observations (i.e., here the products) we want to identify the observations that are similar 

to each other and those that differ from each other. This way, we want to obtain groups of 

observations that are described in a similar way by the variables. To do so we need a measure 

of similarity or its inverse, a measure of dissimilarity. In PCA, the dissimilarity between two 

observations is evaluated by the squared Euclidean distance between these two observations 

and the similarity is just the inverse of the dissimilarity. 

For the variables (here the descriptors), the goal is to evaluate the configuration of their 

interactions—as measured by their covariance or their correlation. This way we want to 

identify the variables that provide similar information (and could be considered redundant) 

and those that provide different information. 

But the goal of PCA is also to identify if there are groups of observations where each group 

differ from the other groups of observations and to identify the variables that create these 

groups 

3. Covariance PCA 

3.1. A first look at the “Beer” data 

For our example of a covariance PCA, we use data originally coming from a sensory profile 

on beers. These data (presented in Table 3.1) give the perceived intensity of twelve attributes 

used to describe six beers—the intensity is given on a scale going from 0 to 7. Table 3.1 

contains the average of the intensity computed for ten panelists who participated to the 

experiment and Table 3.2 gives the basic statistics. 
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Table 3.1. The Beer Tasting Data Set 

 

 

Table 3.2. Basic Statistics for The Beer Tasting Data Set 

 

Table 3.3. The Centered Data 

 

In this example, the intensity of all the variables is measured with the same scale (i.e., from 0 

to 7) and therefore we do not want to normalize these variables because we want the 

differences in intensity to be taken into account by the analysis. By contrast, because we are 

interested in the difference of intensity between the products, we will center the variables (i.e., 

subtract the mean of each variable from the scores for this variable). So, the data table that 

we are, in fact, analyzing is the centered data table given in Table 3.3. This table is not easy 

to read (because human beings are not very good at dealing with numbers with too many 
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digits) and so Table 3.3 is easier to understand using its graphical representation (given in 

Figure 3.1) 

 

Figure 3.1 The Original Data (Centered). 

Before we start principal component analysis, we need to explore the structure of the variables 

used in this study. Here, because we have decided to center but not to normalize the variables, 

the relationship between two variables is expressed by their covariance  

 

Figure 3.2 .A Covariance Matrix HeatMap, B: Correlation Matrix HeatMap. Note: The numbers in 
the heatmaps are multiplied by 100 and rounded. 
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To better understand the covariance structure of the variables, we can look at a map (called a 

heatmap) such as Figure 3.2A that shows the covariance (multiplied by one hundred and 

rounded) between variables (note that the diagonal shows the variance of the variables). In 

the map, for example, we see that Sweet (which has by far the largest variance) has large 

covariances with all the other variables (this is a consequence of having a large variance 

because the covariance between two variables is equal to their correlation times their standard 

deviations). So, if we want to understand the pattern of variability in the data, we can expect 

that the variable Sweet will play an important role. To better understand the pattern of 

association between variables, we have also added their correlation matrix heatmap (see 

Figure 3.2B). 

3.2. So, what does PCA do? 

To identify the most important sources of variability in the data, PCA creates new variables 

called components (also called factors or latent variables) that are obtained by first assigning 

a weight to each variable, multiplying each variable by its weight, and then adding these 

weighted variables together (in technical jargon, we call this process “creating a linear 

combination” of the variables). The weights are chosen so as to create the largest possible 

value of the sum of the squared covariances between the component and the original variables. 

The component with the largest sum of the squared covariances is called the first component. 

Often, we will compute several components that will be ordered by this sum of squared 

covariances (if you feel that “sum of squared covariance” is a long winded name, we will see 

later on that the official name is in fact “squared eigenvalues,” which one do you prefer?). 

For the second component, we use the same process as for the first component but we add the 

constraint that this second component is uncorrelated with the first component. We keep this 

process as long as these components exist (the largest number of such possible components 

is the smallest of the number of variables or observations minus one). For example, the 

weights for the first component (given in Table 3.5) are used to compute  the first component 

(denoted as f1) as: 
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Here the variables are centered (see Table 3.3) and all the elements of a variable are multiplied 

by their weights. So f1 is computed as: 

 

The weights used for computing a component are also often called loadings—but the term 

could be misleading because several related (but different) quantities are all called loadings. 

In PCA, the larger the magnitude of the weight of a variable, the more important this variable 

is for creating the component. But how are these weights obtained? If you are not interested 

in the technical details, you could accept that this involves some kind of magic and skip the 

rest of this paragraph, if you enjoy these details, keep on reading. These weights are obtained 

as the solution of a classical optimization problem known as the eigenvalue decomposition or 

also as the singular value decomposition. This optimization problem can be interpreted in 

several different but equivalent ways. For example, the first component has the property that 

the sum of the squares of the cross-products of this first component with all the original 

variables is as large as possible. Here the sum of squares of these cross products between the 

first component and all the original variables is computed as: 

 

The square root of that sum is equal to √291.59 = 17.075: it is called the first eigenvalue 

(eigen in the German which means specific, proper, or characteristic, and, incidentally, old 

texts often use the term proper or characteristic value). Eigenvalues are traditionally denoted 

by the Greek letter λ (lambda, the letter equivalent to the lowercase letter ℓ in our alphabet). 

So here, we would write that, in PCA, the eigenvalue of a component is also equal to the sum 

of the squares of all the elements of this component. For example, we could also compute the 

first eigenvalue as: 
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Finally, the square root of an eigenvalue is called a singular value (hence the name singular 

value decomposition) and is traditionally denoted by the lowercase Greek letter δ (“delta”). 

For example, the first singular value is equal to: 

 

So, now that we have the first component and the weights to compute it, we need to compute 

the subsequent components. To find the other components, we subtract from each variable 

the first component weighted by the weight of this variable. For example, to handle the 

variable Bitter (whose weight was equal to .158) we multiply the first component by .158, 

and then we subtract it from the variable Bitter. After this subtraction, the variable Bitter 

becomes (see Table 3.3 for the values of all the variables and Table 3.5 for the values of the 

weights for the first component):  

 

When applied to all variables from Table 3.3, this procedure gives the following new data 

table (which is called the deflated table or the residual data table, note that values are rounded 

to two decimals): 

 

In this deflated data table, the first component having been subtracted from all the variables 

is eliminated from the data. Then, the procedure used to find the first principal component is 

applied to the deflated data table and will give the second principal component. This 

procedure will then give the following weights to create the second component: 
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As a (nice) practical consequence of the way the deflated data table is built (i.e., by 

subtraction) the second principal component can be computed using the weights indicated 

above, either with the deflated data table or with the original centered data table (which, in 

general, is easier for computation). This way, the second principal component, denoted f2 is 

computed (from the original variables) as: 

 

This gives the following values for the second component: 

 

The process of deflating the data table and computing the principal components one at a time 

continues till the deflated data table contains only zeros—which, for this data set, happens 

after five iterations (why five? Because, remember, the number of components cannot be 

larger than the smallest of the number of columns or rows minus one, and this number here is 

equal to five). Incidentally, the number of components of a data table is called its rank. With 

this procedure we obtain Table 3.4. 

 

 

 

 

 



10 

Table 3.4. The Five Principal Components for the Six Beers 

 

Table 3.4 describes the relationships between the observations (i.e., the beers): The 

information given in Table 3.4 is, in fact, the same as the information given in the original 

data table (i.e., Table 3.3) but the information in Table 3.4 is organized such that the largest 

possible amount of information is provided by the first component, and then of the 

information left out by the first component, the largest possible amount is given by the second 

component, and so on till the last component. This pattern guarantees that we have the largest 

amount of information for a given number of components. For example, Component 1 

identifies two beers (i.e., Hofbräu and BlueMoon) with large magnitudes but opposite signs 

(2.202 vs. −3.222). Because these two beers have different signs, we can conclude that these 

are the two most different beers in the data set (a conclusion confirmed by examining the 

centered data set in Table 3.3 and Figure 3.1). The last row of Table 3.4 gives the eigenvalue 

of this component obtained here as the sum of squares of its values (and this is another way 

of computing the eigenvalues of the component). Components with large differences in their 

values (and so large eigenvalues) differentiate the observations better than components with 

small differences between their observations (and so small eigenvalues); and, therefore, the 

eigenvalue of a component measures the information given by a component. 

To sum up: components with large eigenvalues carry more information than components with 

small eigenvalues. 
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Table 3.5. The Variable Weights for the Principal Components 

 
Each component describes the relationships between the observations, and this implies that 

to understand these relationships we also need to understand how the variables are combined 

to create the components. This can be done by looking at the weights applied to the variables. 

These weights are given in Table 3.5 where we see that Sweet has the largest negative weight 
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(i.e., –0.849) followed by Alcoholic (i.e., –0.266). This pattern tells that these two variables 

create (for the first component and likely for the whole data set) the largest differences among 

the beers. Note that in Table 3.5, the weights are normalized such that the sum of the squared 

weights for a component is equal to one. This normalization facilitates the comparison of the 

weights within one component (e.g., Sweet, with a value of –0.849 is the most important 

variable for creating Component 1 whereas Acidic with a value of 0.505 is the most important 

variable for creating Component 2). But this normalization does not allow to compare 

importance across dimensions because the weights do not take into account the eigenvalue of 

the component. To palliate this problem, we can re-normalize the table of weights so that their 

sum of squares per component is now equal to the component eigenvalue (as shown in Table 

3.6). In this table, the weights reflect the importance of a variable for the whole analysis rather 

than for their component only (e.g., Sweet, with a value of −3.51 on Component 1 is the most 

important variable for the whole analysis whereas Yeast with a value of  1.13 on Component 

1 is the second most important variable for the whole analysis). 

Table 3.6. The Variable Weights (Scaled to Eigenvalues) for the Principal Components 
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Tables 3.4 and 3.5 (or Table 3.6) together contain all the information needed for PCA but they 

are not very easy to interpret. To facilitate the interpretation, graphs and numerical indices 

(called interpretation helpers) are derived and are presented below. 

3.2.1. How to choose the important components 

The first step in interpreting PCA is to identify the important or relevant components. To do 

so, recall that the components are ordered by their eigenvalues (which express the information 

provided by the components). Remember, also, that the components are uncorrelated and 

therefore that their sums of squares can be added together (this is just a consequence of the 

Pythagorean theorem). The sum of all the eigenvalues is called the total Inertia of the data 

table (often denoted I , i.e., the uppercase letter I in a funny font) and is equal here to 25.51. 

Moreover, this inertia can also be computed from the original variables as illustrated by 

Tables 3.2 and 3.3 (and, of course, Tables 3.4 and 3.6). 

Table 3.7. The Decomposition of the Total Inertia by the Variables 
 

Bitter Acid Sweet Astringent Alcoholic Hop Cereal Toasted Yeast Hay Malt Fermented total 

Inertia (Sum of 
Squares) 

1.34 1.37 13.03 0.64 2.11 1.02 1.60 1.16 1.60 0.48 0.21 0.97 25.51 

Percentage of 
Inertia 

5.24 5.39 51.08 2.49 8.27 4.00 6.27 4.53 6.26 1.88 0.81 3.79 100.00 

 

Table 3.8. The Decomposition of the Total Inertia by the Components 

 

The inertia of the table of data (which is here equal to 25.51) quantifies the variability of these 

data (cf., Tables 3.7 3.8). The most important variable (by far) is Sweet with a sum of squares 

equal to 13.03—a value that corresponds to 51% (i.e., 13.03/25.01 = .51) of the total inertia. 

And so, we will say that the variable Sweet explains 51% of the total inertia; often we will 

also say that Sweet explains 51% of the total variance or that it contributes to 51% of the total 

inertia. Remember that, in PCA, a component is a new variable whose sum of squares (i.e., 

its eigenvalue) is as large as possible (after the previous components have been found). 
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Also, because the eigenvalues can be added, the first two components together explain an 

inertia equals to 17.97 + 4.26 = 21.34—a value that corresponds to 84% of the total inertia 

(see Table 3.8). Of note, for the same number of variables PCA always explains a larger 

proportion of inertia than the same number of original variables. For example, with only one 

component, PCA explains 65% of the total Inertia versus 51% for the variable Sweet; and 

with two components, PCA explains 84% of the total inertia whereas the best two variables 

(Sweet and Alcoholic) together explain only 51% + 8% = 69% of the total inertia. 

To sum up, the eigenvalue and the percentage of inertia explained by a component represent 

its importance. 

But how to decide if a component must be kept for the analysis? There is no real consensus 

here, but, as a rule of thumb, we often consider that in order to keep a component, its 

eigenvalue needs to be larger than the average Inertia. For our example, this rule is equivalent 

to saying that a component should have an eigenvalue larger than 25.51 / 5 = 5.10 (or, 

equivalently, that a component must explain at least 20% of the total inertia when we have 

five variables). This rule is often called the Kaiser’s rule or Kaiser’s criterion (from the name 

of the statistician who first suggested it). This criterion is illustrated in Figure 3.3 that plots 

the eigenvalues as a function of their rank. In this figure, we also plotted the Kaiser’s line 

(i.e., the line representing the average inertia). According to Figure 3.3, only the eigenvalue 

of the first component is above the Kaiser’s line and, therefore, Kaiser’s criterion indicates 

that we should keep only the first component. Another popular rule is called the “elbow test” 

or “elbow criterion.” Here we look at the difference between two consecutive eigenvalues and 

identify the place where the difference between these two consecutive eigenvalues is small. 

At this place the graph looks like an elbow (well, kind of!). In Figure 3.3 the elbow can be 

seen after the second component and so the elbow rule will suggest to keep the first two 

components for further inspection. However, note that some authors suggest to keep only the 

components before the elbow, and, so, these authors would keep only the first component for 

further inspection. With our example, we will keep the first two components for further 

inspection. 
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Figure 3.3 The Scree Plot of the Eigenvalues. The Kaiser’s line represents the average 
eigenvalue: Components above the Kaiserline are kept. 

Note incidentally, that for sensory profiles realized by trained panelists, a tradition stipulates 

(but without any real justification) that in order for a PCA to be valid, the percentage of inertia 

explained by the first two components must be at least 60%. 

3.2.2. How to interpret the relationship between variables and components? 

3.2.2.1 Understanding the components: weights and contributions 

The first step of the analysis is to understand the components (which, remember, are obtained 

by first multiplying the original variables by their weights and then adding them, see, for 

example, Table 3.5). In order to create this map, we use the horizontal axis for Component 1, 

the vertical axis for Component 2, and we use the weights of the variables as their coordinates 

to plot a point representing the variables by a point. We often add an arrow going from the 

origin of the map to the point representing the variable. For example, the weights for variable 

Sweet for Components 1 and 2 are equal to (respectively) –0.849 and –0.403. These numbers 

are the coordinates for the tip of the arrow representing the variable Sweet as shown in Figure 

3.4. 



16 

 

Figure 3.4 Plot of the Variable Weights for Components 1 and 2. The Coordinates of the Tip of 
the Arrows are the Weights of the Variables. 

Figure 3.4 shows that the first component is almost perfectly determined by the variable 

Sweet. This interpretation is confirmed by looking at the values of the weights for the first 

dimension. To make that examination easier we often re-express these weights as a 

proportion. To do so, we square each weight and now the sum of the squared weights of all 

the variables for a given dimension is equal to one (again we use squared values because this 

is a consequence of the Pythagorean theorem: squared values can be added). This squared 

weight is called the contribution of a variable to a component. 

To sum up: Because a contribution is a proportion, the sum of the contributions of all the 

variables for a given component is equal to one. 

There are two criteria to identify the important components from their contributions: The first 

criterion considers that a variable is a relevant contributor for a component if its contribution 

to the component is larger than its contribution to the total Inertia. For example, from Table 

3.5, we find that Sweet contributes 72% to the Inertia of Component 1, and 51% to the whole 

data set. With this rule, Sweet is an important variable for Component 1 because 72% is larger 
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than 51%. The second criterion considers that a variable is a relevant contributor for a 

component if its contribution to the component is larger than the average variable. For 

example, from Table 3.5, we find that Sweet contributes for 72% to the Inertia of Component 

1. With this rule, Sweet is an important variable for Component 1 because 72% is larger than 

the average contribution which is equal to 100 / 12 = 8%. As this example shows, these two 

criteria could differ drastically, but in practice, they often concur. 

The contributions of the variables to the components are given in Table 3.9 where the positive 

contributions are in green, the negative contributions in red, and the important contributions 

in bold italic. For example, this table confirms (again) that Sweet is the major contributor to 

Component 1 because it contributes to 72% of this component. 

A graphical way to easily identify the important contributions is to plot the signed 

contributions for a given dimension as a histogram. For example, Figure 3.5 displays the 

contributions for Components 1 and 2. In this figure, relevant contributions are colored and 

irrelevant contributions are grayed (using the second criterion for relevance). These graphs 

confirm what the table of contributions suggested: the variable Sweet is the only important 

contributor for Component 1. By contrast, Component 2 is mostly created, on one hand by 

Fermented and Acid (with positive weights) and, on the other hand, by Cereal and Sweet (with 

negative weights). 
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Table 3.9. The Contributions of the Variables to the Components (Expressed as Percentages). 
Positive Contributions are in Green, Negative Contributions are in Red. Contributions Larger than 
Average (i.e.,100 / 12 = 8.3) are Typeset in Bold Italic 

 

 

 

Figure 3.5 Histogram of the Contributions of The Variables 

 

3.2.2.2 Understanding the Variables from the Components 

We have just seen that to understand a component we need to look at the weights of the 

variables. This way, for example, we could conclude that the first component was mostly 
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created by the variable Sweet. But, by contrast, to understand how the components explain 

the variables, we need to use the inverse approach and compute the correlations between the 

components and the variables (as if we wanted to predict the variables from the components). 

These correlations are shown in Table 3.10. Here, for example, we see that the variables Sweet 

and Yeast are strongly correlated with the first component (with, respectively, values of –.97 

and .90) and, so, we can say that these two variables are well explained by the first component. 

Along the same lines, the variables Acidic and Fermented are strongly correlated with the 

second component (with, respectively, values equal to .89 and .87): These variables are well 

explained by the second component.  

Note that the sum of the squared correlations of a variable across the components is always 

equal to one. Once again, this is a consequence of the Pythagorean theorem (squared 

quantities are additive). Because the sum of the squared correlations for one variable is equal 

to one, an alternative way of looking at the correlations is to use the squared correlations as 

shown in Table 3.11. Since a squared correlation can be interpreted as a proportion of 

common variance, we can interpret the squared correlations as proportions of explained 

variance (of a variable explained by a component). For example, from Table 3.11 we find that 

Component 1 explains 94.58% of the variance of Sweet and we conclude that almost all the 

variance of Sweet is explained by the first component. 

A good way to have a global vision of the structure of the relationships between variables and 

components is to create a map called the circle of correlation. In this map, the coordinates of 

a variable are the values of the correlations between this variable and the components that are 

represented by the horizontal and vertical dimensions of the map. For example, the position 

of Bitter on the map is indicated by the values of .57 and –.26 (see Figure 3.6). Traditionally 

the position of the variable on this map is indicated by an arrow going from the origin of the 

map to the position of the variable (in a way similar to the representation of the variables in 

the weight map). 

Because the components are linear combinations of the original variables, for every variable 

in the data set, the sum of its squared correlations (in the data set) with all the components is 

always equal to one. This way, for the particular case of the first two components, the 

maximum value of the sum of the squared coordinates is equal to one. And, therefore, from 

the Pythagorean theorem (and standard Cartesian geometry) we know that variables perfectly 
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explained by the first two components will lay on the perimeter of a circle of radius one 

(remember a circle is the locus of the points whose sum of the squared coordinates is equal to 

the radius of the circle). This circle of radius one is called the “circle of correlations” and we 

plot this circle on the correlation map because it gives a scale: The closer a variable is to the 

circle, the better its variance is explained by the components used to draw the circle. 

Therefore, the correlation between two variables is approximated by their angle, and the 

correlation between a variable and a component is also approximated by their angle: A small 

angle indicates a strong positive correlation (exactly +1 when the angle is equal to zero), an 

angle close to 90 degree indicates a correlation close to zero (exactly zero, when the angle is 

equal to 90 degrees), and an angle larger than 90 degrees indicates a negative correlation 

(exactly –1 when the angle is equal to 180 degrees). The quality of the approximation 

provided by these angles is larger the closer to the circle the variables (it is exact when the 

variables are on the circle). 

For example the variables Acidic and Fermented are very close to the circle of correlation and 

the angle that these two variables form with the origin of the circle is small: therefore we 

conclude that they are highly correlated (their correlation is equal to .83, a value 

corresponding to an angle of 34°); but Acidic and Sweet (that are both close to the circle) form 

almost a right angle with the origin: These two variables are almost orthogonal (their 

correlation is equal to .05, a value corresponding to an 87° angle); finally Acidic and Cereal 

(both close to the circle) form a large obtuse angle with the origin: these two variables are 

negatively correlated (their correlation is equal to –.69, a value that corresponds to an angle 

of 134°). By contrast, the variables Astringent and Bitter are far from the circle of correlation 

and the angle that they form with the origin is almost a right angle—a configuration that could 

suggest that these two variables are uncorrelated—but their correlation is, in fact, equal to .50 

(a value corresponding to a 60° angle). This last example illustrates that angles are not good 

approximations of correlation for variables far from the circle of correlations. 
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Figure 3.6 Plot of the Circle of Correlations for Components 1 and 2. The Coordinates of the Tip 
of the Arrows are the Correlations between the Variables and the Components. 

 

The configuration of the correlations (see Tables 3.10 and 3.12, and Figure 3.6) reveals that 

three components are enough to understand most of the structure of the original variables. For 

example, the variables Sweet and Yeast are essentially explained by the first component (with 

correlations respectively equal to –.97 and .90). This pattern of correlation indicates that sweet 

beers do not taste like yeast and beers with a taste of yeast are not sweet. Note, again, the 

difference between the information provided by the weights of the variables and the 

information provided by the correlations between the variables and the components: the first 

component is essentially created by the variable Sweet, but the first component explains most 

of the variance of the variables Sweet and Yeast. This difference between these two 

conclusions can be attributed to the fact that the data are only centered (i.e., not normalized): 

When we do not normalize the variables (as is the case here) variables with a large variance 

(e.g., Sweet) contribute more to the creation of the components than variables with a small 

variance (such as Yeast).  
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Table 3.10. Correlations Between Variables 
and Principal Components. 

 

Table 3.11. Squared Correlations Between 
Variables and Principal Components. 

 
Table 3.12. Squared Correlations between Variables and Components (Expressed as 
Percentages). Square Correlations Larger than Average (e.g., 100 / 5 = 20) are in Bold-Italic. 
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But this difference also reflects the difference between the points of view of these two 

approaches: The weights are used to understand the components from the original variables, 

whereas the correlations are used to understand the variables from the components. For 

example, the variables Acidic and Fermented are mostly explained by the second component 

(with correlations respectively equal to .89 and .87 and squared correlations equal to .79 

and.76). Because the sign of the correlation of these two variables is the same, these two 

variables concur and so these two variables, being positively correlated, provide the same 

information. Finally, the variable Astringent is mostly explained by the third component (with 

a correlation equals to –.87); this third component is also important (but less so) for the 

variables Bitter, Hop and Hay see (see Tables 3.10 and 3.12). 

3.2.3. Interpreting the Observations from the Components 

 

Figure 3.7 Plot of the Observations for Components 1 and 2. The Coordinates of the Points are 
the Values of the Observations for the Components. 

Just like what we did for the analysis of the variables, we use graphical representations and 

“interpretation helpers” to understand the structure of the observations. The first map uses for 

coordinates of the observations their values of the component (i.e., as given in Table 3.4, see 

Figure 3.7) and are called components observations maps (or factor scores maps). In these 

maps, the relationships between observations are represented by their proximity: observations 

close to each other on the graph are described, in roughly the same fashion by the variables, 

whereas observations far from each other are different. Note that the rules used to interpret 

the observations differ from the rules used to interpret the variables. Observations are 
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interpreted using the distance on the map, but variables are interpreted using the angle they 

make with the origin. 

If we happened to have additional information about the observations, we can use it to color 

the observations on the maps. For example, we know the country of production of the beers, 

and we will use this information to color the name of the beers on the map: This way, we see 

right away that the American beer Blue Moon is isolated on the first dimension that we 

previously interpreted as the dimension of the Sweet taste). Because the beer Blue Moon lays 

in the same side of the component as variable Sweet does (i.e., they both negative), we 

conclude that the largest source of variance in the observations comes from the opposition of 

the Sweet beer Blue Moon to all the other beers (mainly to Hofbräu, the least sweet of the 

beers)—an interpretation confirmed by looking at the original centered data. 

3.2.4. Interpretation helpers for the observations 

Table 3.13. The decomposition of the Inertia from the observations. 

 

In principal component analysis, the total variability of the data (i.e., the inertia) is 

decomposed in a parallel fashion by the variables and by the observations, therefore the same 

indices are used for the observations and for variables when we want to identify the important 

observations or the important components. Therefore, just like we did for the variables, for 

the observations we compute contributions (see Table 3.14), correlations (in general called 

cosines) and squared correlations (called squared cosines, of course, see Table 3.15). 
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3.3. Contributions for the observations 

For the observations, the contributions for a given component are computed with the 

following procedure (see Table 3.13): 1) square all the values of the observations for this 

component, and then 2) compute this sum for this component (remember that this sum is equal 

to the eigenvalue of the component see, Table 3.13), and finally 3) divide each of these 

squared values by the eigenvalue of the component (see Table 3.14). For example, the 

contribution (denoted as ‘ctr’) of the beer Blue Moon is computed as: 

 

And just like we did for the variables we can display the contributions with a bar plot as 

illustrated in Figure 3.8. 

Table 3.14. The Contributions of the Observations to the Components (Expressed as 
Percentages). Positive Contributions are in Green, Negative Contributions are in Red. 
Contributions Larger than Average (i.e., 17) are Typeset in Bold Italic. 
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Figure 3.8 Histogram of the Contributions of the Observations 

3.3.2. Squared cosines 

For the observations, by contrast with the variables, we prefer (just as quirk of history) the 

appellation cosine (and squared cosines) to the appellation correlation used for the variables. 

Squared cosines are computed from Table 3.13. The squared cosine of an observation is 

obtained by dividing its squared coordinate by the row total (which gives the squared 

Euclidean distance of the observation to the center of the space, which would be the average 

beer). 

The squared cosine of an observation and a component is the squared cosine of the angle 

made by this observation (in the whole 5-dimensional space) and its projection on this 

component (see Table 3.13). For example, the distance to the average beer for the beer Blue 

Moon is equal to 11.26, and its coordinate on the first component is equal to 10.38; this gives 

a squared cosine between Blue Moon and the first component equal to 10.38 / 11.26 = .92 = 

92%. This high value of the cosine shows that Blue Moon is mostly explained by the first 

component. Therefore, we conclude that the beer Blue Moon, being characterized by the first 

dimension, (which is mostly the taste Sweet as indicated in Table 3.9) differs from all the 

other beers by its strong Sweet taste. 
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Table 3.15. The Squared Cosines (Observations) Expressed as Percentages. 

 

 

3.3.2.2 Explaining the Observations: The Circle of Cosines 

Just like the correlations for the variables, the sum of the squared cosines of an observation 

(across the components) is equal to one, and, therefore, we can use the same map for the 

cosines, by first using the cosines as coordinates and add a circle of Radius one to the 

observations cosine map (see 3.9). To obtain these cosines we just take the square root of the 

squared cosines and add the sign of the coordinates (see Table 3.16). The interpretation of the 

circle of cosines follows the same rules as the circle of correlations: An observation close to 

the circle is well represented by the components used to draw the circle. By contrast, an 

observation close to the center of the circle is poorly represented by the components. For 

example, as seen in Figure 3.9, Blue Moon which lays on the circle is perfectly explained by 

the first Two components. But, by contrast, Bruxelles—being close to the center of the 

circle—is poorly explained by the first two components—an interpretation confirmed by 

looking at Tables 3.15 and 3.16 which, together, reveal that Bruxelles is mostly explained by 

the third component of the analysis 
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Table 3.16. The Cosines between Observations and Components 

 

 

Figure 3.9 Plot of the circle of cosines for the observations and components 1 and 2. The 
coordinates of the points are the value of the cosine between the observations and the 
components. 

 

3.3.3. All together now 

To sum up: Principal component analysis gives the best view of the data in a space of small 

dimensions (often displayed as maps) of the pattern of multivariate data sets. To do so, PCA 

creates new variables called components that are obtained by assigning weights to the original 

variables, multiplying the variables by these weights, and then taking the sum of these 

weighted variables (a process called creating a linear combination of the variables). To 
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understand a component, we first need to identify (numerically or graphically) the important 

variables for this component: those are the variables with a large weight and therefore an 

important contribution. Once the components and their relationships with the original 

variables are understood (i.e., using contributions and correlations), we then use the 

components to analyze and visualized the structure of the observations (again via maps). Note 

that the rules to interpret the graphs from PCA differ for the variables and the observations. 

The variables are interpreted using the angles that they form with themselves and the 

components: A small angle means a large correlation, a right angle means no correlation, and 

a large angle means a negative correlation. The observations, by contrast, are interpreted using 

the distance between observations: Close observations are alike, whereas far away 

observations differ. Finally, to understand the results of a PCA we need to integrate the 

information given by the variables with the information given by the observations. 

However, the interpretation of the relationships between the variables and the observations 

needs to consider the quality of their representation (i.e., correlations and cosines) on the 

component or set of components: The larger the magnitude of a cosine or correlation  between 

an observation (respectively a variable) and a component, the better represented is this 

observation (respectively variable) by this component. In general (but there are exceptions) 

the observations well represented are those that are the furthest away from the center of the 

graph (which represents the average observation). In our example the variable Sweet is almost 

completely explained by the first component and the variable Yeast is also largely explained 

by the first dimension. Because their signs on the first component are opposite (Sweet is 

negative and Yeast is positive) we conclude that these two variables are negatively correlated 

(e.g., large values of one variable go with low values for the other variable)—an interpretation 

confirmed by the important negative correlation equal to –.77. Along the same lines, the beers 

Blue Moon, Paulaner, and Hofbräu are well represented on the first dimension and, therefore, 

their relative position on the circle of cosines (see Figure 3.9) correctly reflects their 

similarities and differences: Paulaner, and Hofbräu are alike, and they both differ from Blue 

Moon. By contrast, Bruxelles is close to Paulaner but is badly represented on the first two 

components (in fact, the tables of cosines and contributions shows that Bruxelles is 

represented almost completely on the third component), therefore the proximity between 

Bruxelles and Paulaner does not imply that they are similar. 
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3.3.4. All together now again for more: Biplot 
Table 3.16. Biplot. Observations normalized to the component’s singular value. 

Observations f1             f2           f3          f4 f5     

Bruxelles 0,08 −0,04 0,47 −0,10 0,01 

Frans Dunkel −0,06 −0,15 0,00 0,21 0,18 

Frans Natur −0,06 −0,41 −0,21 −0,14 −0,05 

Hofbrau 0,44 0,28 −0,19 −0,11 0,09 

Paulaner 0,25 0,06 −0,01 0,16 −0,21 

Blue Moon −0,65 0,26 −0,05 −0,03 −0,03 

Somme des carrées 0,69 0,34 0,31 0,11 0,08 

Somme des carrés ´ 12 = d                           4,13 2,06 1,86 0,69 0,51 

 

Table 3.17. Variables normalized to the component’s singular value. 

Variables f1 f2             f3 f4 f5 

Amer 0,09 −0,06 −0,18 −0,04 0,11 

Acide −0,04 0,21 −0,07 −0,10 0,00 

Sucré −0,50 −0,17 0,01 −0,03 0,02 

Astringent −0,02 −0,03 −0,15 0,11 −0,02 

Alcool −0,16 0,04 −0,19 0,04 0,02 

Houblon −0,06 0,09 −0,15 0,06 −0,09 

Céréales 0,13 −0,16 −0,08 0,03 −0,01 

Grillé 0,08 −0,13 −0,12 −0,12 −0,04 

Levure 0,16 −0,11 –0,1 0,03 0,06 

Foin 0,06 0,02 −0,11 −0,04 −0,02 

Malt −0,03 0,04 −0,05 −0,07 −0,02 

Fermenté −0,05 0,17 −0,01 0,04 0,11 

Somme des carrés 0,34 0,17 0,15 0,06 0,04 

Somme des carrés ´ 6 = d                           4,13 2,06 1,86 0,69 0,51 
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The graphs of the observations and the variables are traditionally separated, because the 

interpretation rules differ for these two sets (i.e., angles for the variables and distances for the 

observations). However, it is possible—especially when the numbers of variables and 

observations are small—and sometimes convenient to draw variables and observations on the 

same graph which is then called a biplot graph (a term created by Gabriel, 1971; see also 

Greenacre 2010 for a nice review).  

 

Figure 3.10.  Biplot for the first two factors of the PCA for he beers example.  

 

To obtain such a simultaneous representation, the first problem to solve is a scaling problem 

because the variances of the representations differ: The sum of the squares of the weights (and 

therefore of the variables) for a component is equal to one but the sum of the squares of a 

component (and therefore of the observations) is equal to its eigenvalue. A first approach to 
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solve this problem is to re-normalize the weights and components so that these two sets now 

have the same sum of squares (and this is sometimes the solution chosen). In this case, each 

set will be normalized so that the sum of the squares of the variables and observations for a 

component is equal to the singular value of this component. But this does not completely 

solve the problem because, if the number of variables and observations differ, then the set 

with the largest number of elements will on average have smaller values than the other set. A 

better normalization will, therefore, also take into account the number of elements of each set 

and normalize these sums of squares so that the sum of the squares of a component multiplied 

by the number of elements considered (i.e., number of observations or variables) is equal to 

the singular value. The data thus normalized are found (respectively) in Tables 3.16 (for the 

observations) and 3.17 (for the variables). This way, observations and variables, being 

commensurable, can now be drawn on the same map as illustrated in Figure 3.10. But how to 

interpret this simultaneous representation of Figure 3.10? To interpret the relationships 

between elements of the same set, the usual rule remains valid: observations are points and 

are interpreted using their distances but variables are lines and are interpreted from their 

angles, and, in addition, their length represents their variance. The question is therefore: how 

to interpret the relationships between observations and variables? To do so, we first start by 

interpreting the center of the map; for the observations this point corresponds to the average 

beer which therefore has values of 0 for all its variables (because we have centered the data); 

for the variables this point represents a variable whose values for all the observations are 0. 

Also the arrow that represent a variable points towards the positive part of the variable. For 

example, the arrow for the variable Sweet (cf. Figure 13A) starts from the value 0 (the 

average) and points towards the positive values, but this representation forgets the negative 

values. We can add them as shown in Figure 3.11B which shows in red the line representing 

the negative values. The relationship between observations (points) and variables (lines) is 

expressed by the (orthogonal)  projection of the observation-point on the variable-line as 

illustrated in Figure 3.11C which shows the projection of the sweetest beer (BlueMoon) on 

the variable Sweet, this observation is projected on the positive end of the arrow representing 

the variable Sweet; similarly, (cf. Figure 3.11D) the least sweet beer (Hofbrau) is projected 

on the negative end of the variable. Finally, we can project all the observations on the variable 

Sweet as shown in Figures 3.11 E and F. The projections of the observations on the variable 

Sweet (Figures 3.11F), give the best approximation in two dimensions of the original values 
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of the variable Sweet as shown by the comparison between the values predicted by the 

projection of the observations and the measured values given by Table 3.19. The high quality 

of this prediction is attested by a correlation coefficient with a value of .96 between original 

and predicted values. Note that the values of the extreme observations (i.e., BlueMoon and 

Hofbrau) are better predicted than those of the median observations, because the extreme 

observations for Sweet are almost perfectly represented by the first two components.  

           A                                                   B 

 

             C                                                   D 

 

 

             E                                                   F 

 

Figure 3.11. Biplot.  How to interpret a simultaneous representation of observations and variables A) the 

variable Sweet (positive part) and its beers, B) the variable Sweet positive and negative parts, C) 
projection of the beer Blue Moon onto the variable Sweet, D) projection of Hofbrau onto the variable 
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Sweet, E) projection of all beers on the Sweet variable, and F) the projections of the beers onto the Sweet 

variable approximate their values for the Sweet variable.  

 

Table 3.17 Biplot. Predicted (and actual) values of the variable Sweet. The predicted values are obtained from 

the projection of the beers onto the variable Sweet in the plane created by the first two components of the 

Biplot. (see Figure 3.11F). 

             Biplot  Sweet 

Predicted 

 Sweet 

Hofbrau      –0,416 –2,319 –2,234 

Paulaner     –0,100 –0,561 –1,206 

Bruxelles    –0,007 –0,038 –0,232 

FranzDunkel  0,018 0,103 0,456 

FranzNatur   0,056 0,314 0,851 

BlueMoon     0,451 2,515 2,366 

 

In summary, for biplots, the relationship between observations and variables is represented 

by the projection of the points representing the observations onto the lines representing the 

variables. Finally, note that the simultaneous representation of observations and variables is 

only practical for small data sets.  

3.3.5. Supplementary Observations and Variables 

Once the analysis is done, new variables and observations can be added to the analysis even 

though they were not used perform the analysis: These new items are then said to be projected 

as supplementary elements by opposition the variables and observations used for the analysis, 

which are then called active elements. Supplementary elements are also called supplemental, 

illustrative, passive, or even “out of sample elements.” The additional observations are 

described by the same variables as the active observations and the supplementary variables 

describe the active observations. To project a supplementary observation, the first step is to 

preprocess it like the active observations, then use the same weights as the active observations 

to calculate the components. Let's take as an example a beer prototype, which we (i.e., the 

authors) have evaluated and whose values are given in Table 3.18. To “project as an 



35 

supplementary observation” this beer, it is first centered using the average values obtained for 

the original data. For example, we rated the beer prototype 4.20 for the variable Bitter whose 

average (given in Table 1) is equal to 3.78 for the 6 original beers which gives as centered 

value for Bitter: 4.20 – 3.78 = 0.42 (cf. Table 3.18). To compute the component values, we 

use the weights that were used for the active observations. This way, the value of the prototype 

for the first component is computed as  

 f1sup = 0.158 ́  Bitter – 0.074 ´ Acid– 0,849 ´ Sweet – 0.040 ´ Astringent  – 0.266 ´ Alcoholic – 0.109 

´ Hop + 0.217 ´ Cereal + 0.137 ´ Toasted  + 0.274 ´ Yeast + 0.109 ´ Hay – 0.50 ´ Malt – 0.092 ´ 

Fermented  

f1sup  = (0.158 ´ 0.42) – (–0.074 ´ 0.14) – (0.849 ´ 1.5) – (0.040 ´ 0.21)  – (–0.266 ´ 0.08) – (0.109 ´ 

0.02) + (0.217 ´ 0.37) + (0.137 ´ 0.27)  + (0.274 ´ 0.37) + (0.109 ´ 0.17) – (– 0.50 ´ 0.09) – (–0.092 

´ 0.16)  

f1sup  = 0.96.   

The same computation (with the appropriate weights) will thus give the following values for 

the beer prototype for all the components: 

 

 f1 f2 f3 f4 f5 

Prototype 0.96 –0.24 –.43 0.10 0.06 

 

As shown in Figure 3.13A, additional observations can be added to the graphs of the active 

observations using the component values as coordinates. The position of the beer prototype 

indicates that it differs from BlueMoon and appears as the average beer of the other beers. 
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Table 3.18. A supplementary observation. A new beer was evaluated by the authors with the same variables 

as the original 6 beers. The second line is obtained by subtracting the average of the original 6 beers (data in 

Table 1) from the values of the prototype beer. 
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Prototype 4,2 2,4 1,5 3,4 4,1 4,6 3,9 3,4 3,6 3,3 3,8 3,3 

Prototype – Mean 0,42 –0,14 –0,73 0,21 –0,08 0,02 0,37 0,27 0,37 0,17 –0,09 –0,16 

 

A                                                   B 

 

 

Figure 3.13. A) An additional beer (the beer "Prototype"), B) An additional variable: the alcohol degree. 

To project supplementary variables, suffice to calculate their correlations with the factors of 

the analysis and to use these correlations as coordinates to place them in the circle of 

correlations (one can also re-normalize these coordinates to make them commensurate with 

the weights). Here we show how to integrate an additional variable into the correlation 

circle. For example, we measured the alcohol degree of the beers reported below: 

 Bruxelles FranzDunkel FranzNatur Hofbrau Paulaner BlueMoon 

Degré d’alcool 4.5 5.0 5.0 5.1 5.2 5.4 
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The correlations between the alcohol degree and the first two components—reported below—

are then used as coordinates to place the supplementary variable alcohol degree in the 

correlation circle (see Figure 3.13B). 

 f1 f2 f3 f4 f5 

Alcohol degree –0.37 0.42 –0.75 0.27 0.24 

 

As shown by the examination of these correlations and Figure 3.13B, the alcohol degree is 

close to the perceived alcohol intensity (but without being identical) but an important part of 

its variance is explained by the third dimension (unlike the perceived intensity which is 

explained mainly by the first dimension). 

To sum up: Additional variables and observations are mainly used to facilitate the analysis's 

interpretation or to add a variable or an observation not considered in the original analysis. 

3.3.6. Rotation 

The interpretation of the results of a PCA is particularly easy:  when the weights of the 

variables or the observations for a component are either very large or very small. When these 

conditions are met, we say that the structure of the PCA results is a simple structure. It is not 

always so, and to facilitate the interpretation one sometimes tries to "simplify" the results. To 

do so, the most popular approach looks for a rotation of the axes representing the components 

to obtain a simpler structure. Although there is quite a number of methods to perform these 

rotations (see Abdi, 2003, for some of them), most of the applications use an approach 

developed by Henry Kaiser (in his doctoral thesis in 1956 and published in 1958) sometimes 

(curiously), called “the little Jiffy” (Kaiser, 1970). This approach has two steps: the first—

which we have already seen—is to identify the number of components that we want to retain 

(using, of course, preferably the Kaiser criterion), the second step performs a rotation of the 

components to obtain a simple configuration. In most cases, the method used to perform this 

rotation will be the procedure called “Varimax rotation” which seeks to maximize the sum of 

the fourth powers of the component weights (in contrast to the PCA which maximizes the 

square of the weights). For the example of the beers, Table 3.8 suggests that three components 

are needed to reconstruct the essential variance of the variables and we will perform the 

rotation in the spaces of the first three principal components. Figure 3.15 shows the effect of 
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the Varimax rotation applied illustrated with the biplot (note: although the biplot represents 

observations and variables, the rotation is calculated only from the variables). In this example, 

the rotation mainly affects the first dimension (the rotation in the plane of the first two 

components corresponds to an angle of about 20 degrees). After rotation, the first component 

now completely explains the variable Sweet and clearly shows the opposition between, on the 

one hand, Blue Moon (the sweetest) and, on the other hand, Paulaner and Hofbrau (the least 

sweet). As can be seen in Figure 3.15, the rotation can make the interpretation of the PCA 

easier and the question then is whether or when to apply a rotation to the PCA results. Here 

opinions diverge strongly and tend to align with national statistical schools. Thus, the Anglo-

Saxon school (very close to psychometrics) systematically recommends the use of rotations 

with as a first step to keep only the components whose eigenvalues are higher than the average 

of the eigenvalues (i.e., the Kaiser criterion, see Figure 3.5; note that here this criterion—if 

applied strictly—would indicate that a rotation is unnecessary, because at least two 

components are needed to perform a rotation). Note that this first step is equivalent to 

estimating the number of real components in the data—a problem far from being solved. The 

European school (especially the French school) considers that rotations are unnecessary, in 

part because it is not possible to define these rotations as a specific criterion since the 

procedure requires first estimating the dimensionality of the data. In practice, it seems that 

the rotation is useful when the data indicate that a small number of components explain the 

essential variance and that the small components can be considered as “random noise.” More 

recently, several procedures alternative to rotation, grouped under the name of “sparsification 

methods (cf. Guillemot et al., 2019),” have been developed to obtain simple structures. These 

methods still used too rarely should however become more popular in the years to come. 

To sum up: A rotation procedure often facilitates the interpretation of the results when the 

data show a clear separation of components representing the signal and components 

representing the noise. 
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                                     A                                                   B 

 

                                  C                                                   D 

 

Figure 3.15. Effect of the Varimax Rotation. A) Biplot for principal Components 1 and 2 B) Biplot for principal 

Components 3 and 2. C) Biplot after rotation for principal Components 1 and 2 D) Biplot after rotation for 

principal Components 3 and 2. We see, for example, that after a (clockwise) of approximately 20 degrees (cf. 

A and C), the variable ‘Sweet’ is now completely aligned with the first component. 

 

4. Normed or Correlation PCA 

In the previous example of a centered principal component analysis (a.k.a., a covariance PCA) 

all the variables measured the intensity of sensory attributes with the same scale going from 

0 to 7. In this case, to differentiate between the products a variable with a large variance is 

more important than a variable with a small variance, and therefore the unit of measurement 

should be kept in order to keep the differences in variance. In a lot of cases, however, the 

variables used for the analysis are measured with units that are either incomparable or 

incommensurable (for example: a weight measured in grams and a temperature measured in 

degrees). In these cases, we need to normalize the variables to be able to integrate them in the 

same analysis (not normalizing would be like comparing apples and oranges). The normalized 
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variables are often called variables without unit and so normalized variables are directly 

comparable (because of being unitless, they have, paradoxically, the same unit). We use 

mostly two methods to normalize variables. The first method converts the variables to “Z-

scores” (a favorite transform in the social sciences). With this transformation, the variance of 

a variable is equal to one and its sum of squares is equal to the number of observations (or the 

number of observations minus one, depending upon the variant of Z-scores). The other 

method (preferred by statisticians) creates normed variables. This procedure first centers the 

variable (i.e., subtract the mean of the variable from all the values of this variable) and then 

normalizes the variable by dividing all values of the variable by the square root of its sum of 

squares (a quantity called the norm of the variable hence the name “normed variables”). 

Normed variables have a sum of squares equal to 1. With the normed variables, the covariance 

between two variables becomes their correlation. We call a PCA performed on normed 

variables a normed or a correlation PCA. We illustrate this approach with our next example 

(on mint chewing gums). 

 

4.1. A First Look at The Data 

The data for the chewing gum example are given in Table 4.1. This table shows 16 products 

(chewing gums) evaluated by four variables (here similarly to the previous example, the 

scores are the average of 10 panelists). Different scales were used to evaluate these products: 

Menthol was measured with a scale going from 1 to 10, Spearmint and Peppermint were 

measured with a scale going from 0 to 5, and the last variable, Long Lasting, was evaluated 

with a scale going from 0 to 100. 
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Table 4.1. The Chewing Gum Tasting Data Set 

 

 
4.2. The Normalized Data 

Since the variables from Table 7.1 are measured with different units they are not comparable 

and therefore the first step of the analysis centers and normalizes the variables. For example, 

we center the variable Long-Lasting, whose mean is equal to 60, by subtracting 60 from all 

its values. The new centered variable now take the values: 0, 0, 10, –20, … , 10, –5, –5, and  

–40. To normalize the variable, we now take each of the values of the centered variable, square 

them, and add them all: 

 

The square root of this sum is the norm of the variable Long-lasting: it is equal to √4,400 =

66.33. The variable Long-Lasting is then normed (we can also say normalized) by dividing 
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the values of the centered the variable by its norm. The result of these operations is found in 

the column Long-lasting of Table 4.2. 

Table 4.2. The Gum Tasting Data Set after Centering and Normalization 

 

Before proceeding to the analysis, a look at the table of correlation (see Table 4.1) gives a 

first idea of the correlation structure of the data. This table shows that Menthol and 

Peppermint are positively correlated (r = .55) and that they are both negatively correlated 

with Spearmint (with values of r equal to, respectively, –55 and –.42), whereas Long Lasting 

has very low correlations with all the other variables (almost null for some). This pattern 

indicates that the variables Menthol, Peppermint, and Spearmint capture the same sensory 

characteristic (with Spearmint being on one side of the scale versus Menthol and Peppermint 

on the other side of the scale), and so these variables should all contribute to the same 

component. Long Lasting being almost orthogonal to these three variables should determine 

a second dimension by itself. So, even though we have four variables, the pattern of 
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correlations suggests that two components are likely to extract most of the information in the 

data.  

 

 

Figure 4.1 Heatmap of the Correlations between the Variables of the Chewing Gum Data.  

 

 

4.3. How to interpret the results of a normed PCA 

The steps to interpret a normed PCA are roughly the same as the steps used to interpret a 

covariance PCA (such as the previous Beer example). 

First, we identify the number of relevant components. Second, we interpret the results from 

the point of view of the variables and identify the variables important for the components 

(using the variable weights), but we also identify the components important for the original 

variables (using the variable correlations with the components). Third, we interpret the 

analysis from the point of view of the observations and identify the observations important 

for the components (using the contributions), but also identify the components important for 

the observations (using the cosines of the observations with the components). 
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4.3.1. How many components: The scree Plot 

 

Figure 4.2 Chewing Gums. The scree plot of the eigenvalues. The Kaiser’s line represents the 
average eigenvalue (and average percentage of variance): Components above the Kaiser’s line 
are kept for the interpretation. 

Here again the first step is to identify the number of components to keep for the analysis. And 

once again, we can use Kaiser’s criterion (despite its shortcomings). For a normed PCA, this 

criterion becomes a simple rule because in a normed PCA all variables have a squared norm 

(i.e., a sum of squares) equal to 1 and therefore the total Inertia of the data is simply equal to 

the number of variables (i.e., here 4). This property leads to the well-known criterion 

(curiously called by Kaiser the “little Jiffy” criterion) for normed PCA: “Keep only the 

components with an eigenvalue larger than one.” Here if we use Kaiser’s criterion (see Figure 

4.2, and Table 4.3) only the first component meets Kaiser’s criterion, but the second 

component is very close to having an eigenvalue equal to 1 (i.e., λ2 = .998), therefore we will 

keep the first two components for the rest of the analysis. Note that the elbow test would also 

keep two components. 
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4.3.2. Interpreting components, variables and observations 

Table 4.3. The four principal components for the ten gums 

 

Table 4.4. The variable weights for the principal components 
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The values in Tables 4.3, 4.4, and 4.5 are used to draw the maps in Figure 4.3. These tables 

and figure confirm the interpretation derived from the correlation matrix and heatmap: The 

information in the data corresponds to two dimensions for the variables (these are well 

represented on the circle of correlation). Some chewing gums are not well represented on the 

first two components (e.g., H.verte and B.chloro), however, because most of the chewing 

gums are well explained by the first two dimension, we can consider that these two 

dimensions extract the essential information in the data for both the variables and the 

observations but that these gums (i.e., H.verte and B.chloro) do not match the general pattern. 

Table 4.5. The Variable Weights (Scaled to Eigenvalues) for the Principal Components 

 
We conclude, from the first component (that explains more than half of the inertia in the data), 

that this first component expresses a dimension that we could call Mint that confound Menthol 

and Peppermint, which are both opposed to the mint Spearmint. According to this 

interpretation the negative side of Component 1 would represent “high Mint” and the positive 

side “low Mint.” This way, the chewing gums evaluated with high scores for Mint are also 

evaluated with high scores for Peppermint but low scores for Spearmint (and vice versa). 

Also, because the variable Long Lasting is roughly orthogonal to the first Mint component 

and is the sole contributor to the second dimension, we conclude that the lasting effect for the 

taste of a chewing gum is a property independent from the type of mints used in the 

formulation of these chewing gums. 
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Figure 4.3 Chewing Gums. Components 1 and 2. Circles of Cosines (Descriptors and Gums). 
Descriptor weights and Gums Factor Scores 

 

4.4.  Biplot and Rotation 

When the number of variables and (to a lesser extent) the number of products are relatively 

small, a simultaneous representation (i.e., a “biplot”) is a convenient way to display the gist 

of the analysis with a single graphic (as shown in Figure 4.4A). This representation is even 

more readable after applying a Varimax rotation in the first two dimensions of the PCA 

(Figure 4.4B): now, the first component is simply the type of mint taste and the second 

component: the duration of the taste of gum in the mouth. 
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                              A                                                   B 

 

Figure 4.4. Chewing-gums:  A) standard biplot B) Varimax rotated biplot. 

  


